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Abstract. We consider the effect of exact gluon kinematics in the virtual photon–gluon impact factor at
small x. By comparing with fixed order DIS scheme splitting and coefficient functions, we show that the
exact kinematics results match the fixed order results well at each order, which suggests that they allow for
an accurate NLL analysis of proton structure functions. We also present, available for the first time, x-space
parameterisations of the NNLO DGLAP splitting functions in the DIS scheme, and also the longitudinal
coefficients for neutral current scattering.

1 Introduction

The study of the proton structure functions at small x is
of phenomenological importance, given the partonic centre
of mass energies now accessible in collider experiments at
HERA [24, 26] and the forthcoming LHC. However, the
coefficient and splitting functions relating the structure
functions to the parton distributions contain logarithms
in the Bjorken x variable. Although QCD fits at next-to-
leading order (NLO) in αS describe the data well, there is
some evidence that a resummation of log 1/x terms would
improve the fits [3]. This is accomplished in principle via
the BFKL equation [1], an integral equation for the unin-
tegrated gluon 4-point function f(x, k2

1, k
2
2) whose kernel

is known at next-to-leading logarithmic (NLL) order [2].
In deep inelastic scattering, the moments of the structure
functions Fi(N,Q2) =

∫ 1
0 x

NFi(x,Q2)dx are then given
by the high energy factorisation formula [28,29]:

Fi

(
Q2, N

)
(1)

= αS

∫ ∞

0

dk2

k2 hi

(
k2/Q2) f (N, k2, Q2

0
)
gB(N,Q2

0),

where gB is the bare gluon distribution at momentum scale
Q2

0, and the strong coupling αS is fixed at LL order. The
hi(k2/Q2) are the impact factors coupling the virtual pho-
ton to the gluon. At present these are known to LL order
only [5, 29], although the leading logarithms in the ob-
tained splitting and coefficient functions are suppressed by
an overall power ofαS in the fixed order expansion1. Hence a

a e-mail: cdw24@hep.phy.cam.ac.uk
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1 Elsewhere in the literature, e.g. [4], these would be referred

to as next-to-leading (NLL) terms. The next-to-leading loga-

full analysis including next-to-leading logarithms from the
impact factors together with those from the BFKL kernel is
not possible. In Sect. 1 of this paper we show how to obtain
the quark–gluon splitting and longitudinal gluon coefficient
functions from the impact factors. In Sect. 2, we discuss the
DIS scheme coefficient and splitting functions at NNLO,
needed to compare directly with the small x expansion, as
these have not been presented before. In Sect. 3 we com-
pare the splitting and coefficient functions obtained from
(1) with the complete NLO and NNLO results, showing
that the inclusion of exact gluon kinematics in the photon
impact factors gives a good approximation to higher order
effects at small x, and quite possibly contains the dominant
information in a NLL (or higher) order calculation.

2 P DIS
qg and CDIS

Lg with exact gluon kinematics

After solving the BFKL equation for f(N, k2, Q2
0), the lat-

ter two factors in (1) combine to give a regularised uninte-
grated gluon distribution, and hi can naively be interpreted
as the coefficient function linking the gluon density with
the structure function. However, in the case of F2, the im-
pact factor diverges as k2/Q2 → 0. One can understand
this given that at O(α0

S), F2 is proportional to the quark
singlet parton distribution with no gluon contribution. One
does not expect to describe this non-perturbative depen-
dence using perturbation theory, and thus the impact factor
diverges. One must instead consider solving the evolution

rithms arising from the impact factors would then be NNLL
in the overall expansion. Here we consider as leading those
logarithms which arise from the most singular behaviour of the
impact factor at small x.
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Fig. 1. Diagrams contributing to the LL impact factor. Two
further diagrams are obtained by reversing the direction of the
quark loop

equation for F2, via the quantity

∂F2
(
Q2, N

)
∂ lnQ2 (2)

= αS

∫ ∞

0

dk2

k2 h2
(
k2/Q2) f (N, k2, Q2

0
)
gB
(
N,Q2

0
)
,

which serves to define the impact factor h2. In a general
factorisation scheme, one loses the simple interpretation of
h2 as the coefficient function relating the gluon distribution
to the structure function. Instead it represents a mixture
of the coefficient C2g and the anomalous dimension γqg. If
one chooses to work in the DIS scheme [6], where F2 is given
by the naive parton model expression to all orders, then h2
can be interpreted directly as the quark–gluon anomalous
dimension γDIS

qg . From (1), the longitudinal impact factor
hL is identified with the coefficient function CDIS

Lg and does
not diverge due to the fact that the longitudinal structure
function vanishes at O(α0

S). It is convenient to perform a
second Mellin transformation on the factorisation formulae
to unravel the convolution in k-space:

F̃L(γ,N) =
∫ ∞

0
dk2 (k2)−1−γ FL

(
k2, N

)
= h̃L(γ)G̃(γ,N), (3)

and similarly for (2).
We now consider the imposition of exact kinematics

in the impact factor, following the approach of [7]. Di-
agrams contributing to the impact factor are shown in
Fig. 1. One may introduce a Sudakov decomposition for
the 4-momenta k, r:

l = αq′ + βp+ l⊥; (4)

k =
q2

s
q′ + xgp+ k⊥, (5)

where p is the proton 4-momentum (light-like if one ignores
the proton mass), q′ = q + xp a second light-like vector
involving the Bjorken variable x = Q2/(2p · q), and s =
(p + q)2. The on-shell requirements for the intermediate
quarks ((l + k)2 = (q − l)2 = 0) then lead to the relation

xg = x

[
Q̂2 − k̂2

⊥ − l′⊥
2

Q̂2

]
, (6)

with Â ≡ α(1−α)A2, Q2 = −q2, and l′⊥ = l⊥ +(1−α)k⊥.
At LL order, the momentum fraction xg of the incident
proton carried by the gluon is undetermined, as (6) implies
that the difference log xg − log x is finite as x → 0. By
imposing correct kinematics for the gluon, one includes in
the impact factor significant higher order information.

The resulting N dependent factors h2(γ,N) and
hL(γ,N) were computed in [7], and from them one may
derive estimates of γDIS

qg and CDIS
Lg at fixed order in αS. One

first expands the relevant impact factor as a Taylor series
in γ with coefficients h(n)

i . In solving the BFKL equation,
γ is identified as the anomalous dimension γ(N) given at
NLL accuracy in [2] (any further accuracy would require
knowledge of the NNLL BFKL kernel). One thus has

C
DIS(e)
Lg (αS, N) =

∞∑
n=0

h
(n)
L (N)[γ(αS, N)](n), (7)

as the exact kinematics result for the coefficient function up
to NLL order, and similarly for γDIS(e)

qg in terms of h2. The
BFKL anomalous dimension has a perturbative expansion:

γ(αS, N) =
∞∑

n=1

αn
Sfn(N), (8)

so that (7) is a power series in αS, beginning at O(αS). The
correspondingx-space expressions are given inAppendix A.
One may compare order by order with the complete results
forCLg and γqg. The corresponding MS functions have been
computed up to O (α3

S

)
[8–13,32].

However, for a direct comparison with the exact kine-
matics results one needs the corresponding results in the
DIS scheme rather than the conventional MS scheme.

3 DIS scheme splitting
and coefficient functions

The NNLO singlet and non-singlet splitting functions have
recently been computed in the MS scheme [13, 17], along
with the O(α3

S) coefficient functions for neutral boson ex-
change [12,18]. They are extremely lengthy – for example,
the typeset NNNLO gluon coefficient C2g is around twelve
pages long [18]. The NNLO splitting functions are shorter,
but like the coefficients are made more complicated by the
nature of the algebraic functions involved. All of the NNLO
coefficient and splitting functions involve combinations of
harmonic sums inN -space,which after inverseMellin trans-
formation yield harmonic polylogarithms [30] in x-space
(up to weight five at this order). These are non-standard
functions and thus must be generated numerically [31]. The
combination of length and numerical complexity makes it
is infeasible that the complete results can be immediately
used in phenomenological applications. Instead one may
parameterise the results in x-space in terms of simple al-
gebraic functions, with a precision that far exceeds that
due to higher order corrections. The Mellin transforms of
the parameterisations then give suitably accurate N -space
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representations. Parameterisations of the MS functions are
given in [12, 13, 17, 18]. From these we have derived cor-
responding representations of the DIS scheme quantities,
accurate to within a percent apart from near the zeros.
Our results are presented in Appendix B.

In transforming between the MS and DIS schemes, we
follow the argument presented in [14,32]. The DIS scheme
is characterised by the singlet structure function F2 having
the same form as the naive parton model to all orders [6]:

F2s

(
x,Q2) = ΣDIS ≡ CMS

2q ⊗ΣMS + C2g ⊗ gMS, (9)

where Σ =
∑

i(qi + q̄i) is the singlet quark density, and the
factorisation and renormalisation scales have been chosen
as Q2. The factorisation scheme independence of F2 then
imposes a transformation between the DIS and MS scheme
partons. There remains an ambiguity in the definition of
the DIS gluon. However, the momentum sum rule fixes

∫ 1

0
dxx

[
Σ
(
x,Q2)+ g

(
x,Q2)] = 1 (10)

in both schemes. In Mellin space, this becomes

ΣDIS(N) + gDIS(N) = ΣMS(N) + gMS(N) (11)

for N = 12. One may remove the ambiguity by extending
(11) to all N , and one obtains (in Mellin space):

qDIS ≡
(
ΣDIS

gDIS

)

=

(
CMS

2q CMS
2g

1 − CMS
2q 1 − CMS

2g

)(
ΣMS

gMS

)

≡ ZqMS. (12)

To obtain the splitting functions, one differentiates (12)
with respect to Q2 and rearranges. Returning to x-
space yields

P DIS =
(

Z ⊗ P MS + β(αS)
dZ

dαS

)
⊗ Z−1. (13)

where

P =
(
Pqq Pqg

Pgq Pgg

)
.

Substituting the perturbative expansions of the MS scheme
coefficient and splitting functions3, along with the QCD β
function4, one can derive the DIS scheme results order by
order in αS. The explicit transformations at O(α3

S) are

2 This corresponds to our choice of Mellin variable and that
of [7]. The alternative definition f̃(N) =

∫ 1
0 x(N−1)f(x) is also in

common use, and in that case the second moment is constrained.
3 Conventionally, P

(n)
ij is the coefficient of an+1, where a =

αS/(4π); C
(n)
{2,L}i is the coefficient of an.

4 Here βn is the coefficient of an+2.

P (2)DIS
qq

= P (2)MS
qq + C

(2)MS
2q ⊗ P (0)MS

qg + C
(2)MS
2g ⊗ P (0)MS

gq

+C(1)MS
2g ⊗ P (1)MS

gq + C
(1)MS
2q ⊗ P (1)MS

qg

−C(1)MS
2g ⊗ P (0)MS

gq ⊗ C
(1)MS
2q

+C(1)MS
2g ⊗ P (0)MS

gg ⊗ C
(1)MS
2q

−C(1)MS
2g ⊗ P (0)MS

qq ⊗ C
(1)MS
2q

+C(1)MS
2g ⊗ P (0)MS

qg ⊗ C
(1)MS
2q + β0C

(1)MS
2q ⊗ C

(1)MS
2q

−β0C
(1)MS
2g ⊗ C

(1)MS
2q − 2β0C

(2)MS
2q − β1C

(1)MS
2q ; (14)

P (2)DIS
gq

= P (2)MS
gq − C

(2)MS
2q ⊗ P (0)MS

qq − C
(2)MS
2g ⊗ P (0)MS

gq

−C(2)MS
2q ⊗ P (0)MS

gq + C
(2)MS
2q ⊗ P (0)MS

gg

−C(1)MS
2q ⊗ P (1)MS

qq − C
(1)MS
2g ⊗ P (1)MS

gq

−C(1)MS
2q ⊗ P (1)MS

gq + C
(1)MS
2q ⊗ P (1)MS

gg

+C(1)MS
2q ⊗ P (0)MS

qq ⊗ C
(1)MS
2q

+C(1)MS
2q ⊗ P (0)MS

gq ⊗ C
(1)MS
2q

−C(1)MS
2q ⊗ P (0)MS

gg ⊗ C
(1)MS
2q

−C(1)MS
2q ⊗ P (1)MS

qg ⊗ C
(1)MS
2q − β0C

(1)MS
2q ⊗ C

(1)MS
2q

+β0C
(1)MS
2g ⊗ C

(1)MS
2q + 2β0C

(2)MS
2q + β1C

(1)MS
2q ; (15)

P (2)DIS
gg

= P (2)MS
gg − C

(2)MS
2q ⊗ P (0)MS

qg − C
(2)MS
2g ⊗ P (0)MS

gq

−C(1)MS
2q ⊗ P (1)MS

qg − C
(1)MS
2g ⊗ P (1)MS

gq

+C(1)MS
2g ⊗ P (0)MS

qq ⊗ C
(1)MS
2q

+C(1)MS
2g ⊗ P (0)MS

gq ⊗ C
(1)MS
2q

−C(1)MS
2g ⊗ P (0)MS

gg ⊗ C
(1)MS
2q

−C(1)MS
2g ⊗ P (0)MS

qg ⊗ C
(1)MS
2q

+β0C
(1)MS
2g ⊗ C

(1)MS
2g − β0C

(1)MS
2q ⊗ C

(1)
2g MS

+2β0C
(2)MS
2g + β1C

(1)MS
2g ; (16)

P (2)DIS
qg

= P (2)MS
qg + C

(2)MS
2q ⊗ P (0)MS

qg + C
(2)MS
2g ⊗ P (0)MS

gg
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−C(2)MS
2g ⊗ P (0)MS

qq + C
(2)MS
2g ⊗ P (0)MS

qg

+C(1)MS
2q ⊗ P (1)MS

qg + C
(1)MS
2g ⊗ P (1)MS

gg

−C(1)MS
2g ⊗ P (1)MS

qq + C
(1)MS
2g ⊗ P (1)MS

qg

−C(1)MS
2g ⊗ P (0)MS

gq ⊗ C
(1)MS
2g

+C(1)MS
2g ⊗ P (0)MS

gg ⊗ C
(1)MS
2g

−C(1)MS
2g ⊗ P (0)MS

qq ⊗ C
(1)MS
2g

+C(1)MS
2g ⊗ P (0)MS

qg ⊗ C
(1)MS
2g

+β0C
(1)MS
2q ⊗ C

(1)MS
2g − β0C

(1)MS
2g ⊗ C

(1)MS
2g

−2β0C
(2)MS
2g − β1C

(1)MS
2g . (17)

Non-singlet quark combinations transform according to

qDIS
ns = CMS

2ns ⊗ qMS
ns , (18)

which has the form of (12) but with a trivial transforma-
tion matrix. Hence one obtains for the non-singlet splitting
functions relevant to neutral and charged current scatter-
ing [17]

P+,−(2)DIS
ns = P+,−(2)MS

ns + β0C
(1)MS
2q ⊗ C

(1)MS
2q

−2β0C
+,−(2)MS
2ns − β1C

(1)MS
2q ; (19)

The pure singlet splitting function is given by

P (2)DIS
ps = P (2)DIS

qq − P+(2)DIS
ns . (20)

The F2 coefficient functions are simply defined to all or-
ders in the DIS scheme. For the longitudinal coefficients,
one considers

FL =
(
CMS

Lq CMS
Lg CMS

Lns

)
⊗


Σ

MS

gMS

qMS
ns


 . (21)

Using the transformation equations (12) and (18), one finds(
CDIS

Lq CDIS
Lg CDIS

Lns

)

=
(
CMS

Lq CMS
Lns C

MS
Lg

)
⊗
(

Z 0
0 C+MS

2ns

)−1

. (22)

Explicit results at O(α3
S) after substituting the expansions

of the MS scheme coefficient functions are

C
(3)DIS
Lg

= C
(3)MS
Lg + C

(1)MS
Lg ⊗ C

(2)MS
2g − C

(1)MS
Lq ⊗ C

(2)MS
2g

+C(2)MS
Lg ⊗ C

(1)MS
2g − C

(2)MS
Lq ⊗ C

(1)MS
2g

+C(1)MS
Lg ⊗ C

(1)MS
2g ⊗ C

(1)MS
2g

−C(1)MS
Lq ⊗ C

(1)MS
2g ⊗ C

(1)MS
2g

−C(1)MS
Lg ⊗ C

(1)MS
2q ⊗ C

(1)MS
2g

+C(1)MS
Lq ⊗ C

(1)MS
2q ⊗ C

(1)MS
2g ; (23)

C
(3)DIS
Lq

= C
(3)MS
Lq + C

(1)MS
Lg ⊗ C

(2)MS
2q − C

(1)MS
Lq ⊗ C

(2)MS
2q

+C(2)MS
Lg ⊗ C

(1)MS
2q − C

(2)MS
Lq ⊗ C

(1)MS
2q

+C(1)MS
Lg ⊗ C

(1)MS
2g ⊗ C

(1)MS
2q

−C(1)MS
Lq ⊗ C

(1)MS
2g ⊗ C

(1)MS
2q

−C(1)MS
Lg ⊗ C

(1)MS
2q ⊗ C

(1)MS
2q

+C(1)MS
Lq ⊗ C

(1)MS
2q ⊗ C

(1)MS
2q ; (24)

C
+(3)DIS
Lns

= C
(3)MS
Lns − C

(2)MS
Lns ⊗ C

(1)MS
2ns − C

(1)MS
Lns ⊗ C

(2)MS
2ns

+C(1)MS
Lns ⊗ C

(1)MS
2ns ⊗ C

(1)MS
2ns . (25)

Then the pure singlet coefficient is given by

C
(3)DIS
Lps = C

(3)DIS
Lqq − C

+(3)DIS
Lns . (26)

The transformation terms were evaluated in N -space, and
divergent high and low N limits were then extracted. Up
to O(1/N), one has a choice in how to extract the high N
piece. We have chosen this in such a way as to lead to simple
plus distributions and logarithms of (1−x) in the x-space
functions. The remaining finite functions as N → 0,∞
were parameterised in x-space by evaluating the inverse
Mellin transform numerically. Finally the transformation
terms were added to the existing MS parameterisations.
Thus the plus distribution and small-x divergent terms are
exact up to truncation of the coefficients, as also are the
parts of the log(1−x) terms not involving (1−x) log(1−x).

The coefficients of δ(1 − x) in P+
ns, Pgq and Pgg have

been modified, and δ(1 − x) contributions added to Pqg

that should in principle be absent. This, following [12,13,
17,18], is to increase the N -space accuracy, such that the
parameterised functions satisfy the momentum sum rules:

γ(2)DIS
qg (N) + γ(2)DIS

gg (N) = 0; (27)

γ(2)DIS
gq (N) + γ(2)DIS

qq (N) = 0, (28)

for N = 15. One can also introduce such terms into the
longitudinal coefficient functions, by fitting to numerical

5 This also implies that the nf independent part of P
(2)DIS
gg

should vanish, given that Pqg has no term at O(n0
f ).
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values of the low integer moments. We choose not to in-
troduce these, however, given the size of these effects (no
more than a few parts permille) do not exceed the uncer-
tainty of the parameterisations. We have checked all of our
expressions against known numerical moments [16].

Particularly noteworthy is the singularity structure of
the DIS scheme functions as x → 1. One sees that the
singlet quark splitting functions contain plus distributions
up to D2

6, or log3(N) in Mellin space. However, P (2)DIS
gq

contains more singular terms up to D4 ≡ log5(N). One
can understand this by considering what happens in the
MS scheme. There log(N) terms arise in the coefficients
C2q and C2ns as a result of soft gluon emission from the
quark probed by the virtual photon. As x → 1, there is
insufficient phase space for the emission of real gluons,
and thus an incomplete cancellation between singularities
arising from virtual and real emission. The leading log-
arithms in N exponentiate [19, 20], and the sub-leading
logarithms can also be resummed [33–36]. Combining the
known resummation and fixed order results allows knowl-
edge of the four leading towers of high N logarithms in
C2q to all orders in αS [21]7. In the DIS scheme there are
no such logarithms in the coefficients, as C2q is defined
trivially to all orders. Instead the soft gluon resummation
effects enter the splitting functions. The leading log(N)
terms in CMS

2ns are produced by exponentiating those in
γDIS
ns . This follows from the N -space evolution equation for

the non-singlet quark density:

∂q̃DIS
ns

∂ logQ2 = γDIS
ns (N)q̃DIS

ns , (29)

which is easily solved to give

q̃DIS
ns

(
Q2) = q̃DIS

ns
(
Q2

0
)
exp

[∫ αS(Q2)

αS(Q2
0)

γDIS
ns

dαS

β(αS)

]
(30)

= qDIS
ns

(
Q2

0
)

× exp

[∫ αS(Q2)

αS(Q2
0)

∞∑
n=0

∞∑
m=0

∫ αS(Q2)

αS(Q2
0)

cn,mβmγ
(n)DIS
ns

× αm+n−1
S dαS

]
,

where the cn,m are coefficients obtained after substitut-
ing in the perturbative expansions of the β function and
anomalous dimension. Performing the integration in the
exponent gives

qDIS
ns

(
Q2) = qDIS

ns
(
Q2

0
) [αS

(
Q2
)

αS (Q2
0)

]− γ
(0)DIS
ns

β0

6 See Appendix B for the definition of these functions.
7 This analysis has very recently been extended to include

even higher order logarithmic corrections to DIS and Drell–Yan
type processes [37].

× exp

{
−
(
γ

(1)DIS
ns

β0
+
β1γ

(0)DIS
ns

β2
0

)

×
[
αS
(
Q2
)

4π
− αS

(
Q2

0
)

4π

]
+ . . .

}
, (31)

where the ellipsis denotes terms giving rise to sub-leading
logarithms. Given that γ(0)DIS

ns ∼ logN and γ
(1)DIS
ns ∼

log2(N) asN → ∞, the leading logarithms in the exponent
come from the term in γ

(1)
ns . The form of the non-singlet

structure function in the DIS and MS schemes is

F2ns = qDIS
ns ≡ CMS

2ns ⊗ qMS
ns . (32)

Thus from (30), ones sees that the leading powers of log(N)
in the MS scheme non-singlet coefficient function are gen-
erated by exponentiation of those in the DIS scheme NLO
anomalous dimension γ

(1)DIS
ns (the LO anomalous dimen-

sion is independent of the factorisation scheme, and thus
the prefactor in (31) is also found in the MS scheme). The
next-to-leading log(N) terms in CMS

ns are not so straight-
forward, but are determined by the exponentiation of a
mixture of γ(1)DIS

ns and γ(2)DIS
ns , and so on for the other sub-

leading logarithms. A similar argument relates the leading
log(N) terms in CMS

2q with those in γ(1)DIS
qq .

This explains the absence of more singular logarithms
∼ log4(N) in the DIS scheme γ(2)

qq , as the highest power
of log(N) is limited by the fact that it cannot exceed
the power obtained by exponentiation of the leading
log term in γ

(1)DIS
qq . Looking at (14), the transforma-

tion terms in P
(2)MS
qq → P

(2)DIS
qq involve the combination

β0C
(1)MS
2q ⊗ C

(1)MS
2q − 2β0C

(2)MS
2q . Thus log4(N) terms in

C̃
(2)MS
2q are cancelled by the combination [C̃(1)MS

2q ]2/2! due
to the exponential structure of the leading logs in the co-
efficient function.

The D4 term inP (2)DIS
gq corresponds to a next-to-leading

high x divergence in CMS
2q (∼ α3

S log5(N) in Mellin space),
arising from the terms in (15):[
P (2)DIS

gq

]
D4

=
[
−C(2)MS

2q ⊗ P (0)MS
qq + C

(0)MS
2q ⊗ P (0)MS

gg

+C(1)MS
2q ⊗ P (0)MS

qq ⊗ C
(1)MS
2q

−C
(1)MS
2q ⊗ P (0)MS

gg ⊗ C
(1)MS
2q

]
D4

. (33)

The small x limit of P (2)DIS
qg will be discussed in Sect. 3 of

this paper. Looking at the other splitting functions, one
may verify the LL relations [5]:

Pgq =
CF

CA
Pgg, Pqq =

CF

CA

[
Pqg − αS

2π
TR

2
3

]
, (34)

where CA = 3, CF = 4/3 are the QCD Casimir invariants
and TR = 1/2. These relations are also true at LL order
in the MS scheme.
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The non-singlet and singlet splitting functions are plot-
ted in Figs. 2 and 3, respectively. The singlet functions
have been multiplied by x to alleviate the small x diver-
gence.Aside from the differences at high x discussed above,
one sees that the DIS scheme functions are more divergent
at small x. This is analogous to the high x behaviour –
in changing schemes one transfers divergences from the
quark singlet coefficient to the splitting functions. Note
also the qualitatively different structures at intermediate
x in the two schemes. Each of the singlet splitting functions
develops an extra turning point in the DIS scheme.
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Fig. 5. The longitudinal
gluon coefficient function in
the DIS (solid) and MS
schemes (dashed) with nf =
4, multiplied by x due to the
divergence at small x

The NNLO Pqg develops a negative dip in the DIS
scheme at intermediate x, before increasing again as x → 0.
Together with the large negative dip at high x this gives
a negative result at intermediate x when convolved with a
model gluon distribution which is more singular than the
splitting function. We return to this feature in Sect. 3. In
fact, the qualitative structure of the DIS scheme splitting
function can be reproduced from the truncated transfor-
mation:

P (2)DIS
qg ∼ P (2)MS

qg + C
(2)MS
2g ⊗ P (0)MS

gg − 2β0C
(2)MS
2g . (35)

The longitudinal quark and gluon coefficient functions are
shown in Figs. 4 and 5. The two gluon coefficients are
extremely similar. The pure singlet and gluon coefficients
share the same small x limit, as the LL coefficients are the
same in both schemes. There is, however, an extra turning
point in the DIS scheme pure singlet function at higher x.
Also of note is the negativity of the non-singlet coefficient at
small x, a property also shared by the NLO result such that
the complete non-singlet coefficient is negative at small x.
However, it is not divergent as x → 0 so that convolution
with a suitable non-singlet test function does not give a
negative non-singlet structure function (see Fig. 6).

We now compare the DIS scheme quark–gluon anoma-
lous dimension and longitudinal gluon coefficient with the
corresponding results derived from exact gluon kinematics.
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the coefficient at low x, the
structure function FLns ∼
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4 Comparison of exact kinematics
with NLO and NNLO results

At O(αS), the exact kinematics results correspond exactly
with the complete results as at this order, all the relevant
diagrams are included in the impact factor calculation.
The imposition of exact kinematics then supplements the x
dependence that is missing when evaluating these diagrams
in the LL limit. At higher orders, one can compare the
complete N -space functions with the estimates obtained
from the modified impact factors. Expanding inN one finds

γ(1)DIS(e)
qg

=
34.67nf

N
− (102.9nf + .2140n2

f

)
+
(
172.1nf + .4391n2

f

)
N

− (246.0nf + .6598n2
f

)
N2 + O (N3) ; (36)

γ(2)DIS(e)
qg

=
441.47nf

N2 − 2635nf + 49.53n2
f

N

+
(
7555nf + 118.0n2

f + .01682n3
f

)
− (15089nf + 204.0n2

f + .06958n3
f

)
N (37)

+
(
25166nf + 312.1n2

f + .1462n3
f

)
N2 + O (N3) ,

The complete NLO and NNLO results give

γ(1)DIS
qg =

34.67nf

N
+
(−109.3nf + .8889n2

f

)
+
(
233.6nf − 5.072n2

f

)
N (38)

+
(−374.6nf + 11.70n2

f

)
N2 + O (N3) ;

γ(2)DIS
qg =

441.47nf

N2 +
−3165nf + 30.19n2

f

N

+
(
12945nf − 399.5n2

f + .5926n3
f

)
+
(−34493nf + 1589n2

f − 6.121n3
f

)
N

+
(
73141nf − 4389n2

f + 27.53n3
f

)
N2
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lous dimensions (solid) (multiplied by x to remove the small x
divergence) alongside the results obtained from the LL photon–
gluon impact factor with exact gluon kinematics (dashed). Also
shown are the LL approximations (dotted)

+O (N3) . (39)

The leading logarithms in x (most divergent terms as
N → 0) are correctly predicted from the resummation,
and one sees that the next-to-leading terms in γ(2)DIS

qg are
well estimated by the exact kinematics expression (within
2% at NLO and 7% at NNLO, for nf = 4). The accuracy
falls off for higher order terms inN , although these are not
associated with small x divergence. The x-space functions
are shown in Fig. 7. The exact kinematics results quali-
tatively reproduce the structures of the complete results,
even at high x. They clearly do much better than the LL
terms at approximating the splitting functions. Note that
the small-x behaviour does not set in until rather low x, as
can be seen by the splitting function only turning positive
for x � 2 × 10−3 at NNLO (for nf = 4). The qualitative
trend is that at higher order in αS, the splitting function
turns positive at lower x. We have confirmed, for example,
that the NNNLO exact kinematics splitting function does
not turn positive until x � 10−4. A good estimate for these
values is obtained by approximating the exact kinematics
splitting functions by their asymptotic limits as x → 0:

xP (2)DIS(e)
qg (40)

� 441.47nf log
1
x

− (2635nf + 49.53n2
f

)
+ . . . ;

xP (3)DIS(e)
qg

� 11671nf
1
2!

log2 1
x

+
(−78095nf − 1410n2

f

)
log

1
x

+
(
248414nf + 6924n2

f + 8.265n3
f

)
+ . . . , (41)

where the ellipses represent terms vanishing in this limit.
Setting xP

(n)DIS(e)
qg = 0 gives the approximate value

x = x0 at which the LL terms begin to dominate over
the sub-leading logarithms. For nf = 4, one finds x0 �
3 × 10−3, 1 × 10−4 at NNLO, NNNLO respectively. The
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Fig. 8. Example diagrams which contribute at O(α3
Sn2

f ) to the
structure functions

lower value of x0 with increasing order of αS implies that
the leading small-x resummation effects become less impor-
tant phenomenologically at higher orders, as sub-leading
logarithms dominate until very small x.

From (38) and (39), we note that in the non-leading
logarithmic terms, contributions involving higher powers
of nf are estimated poorly – including being of the wrong
sign. This is expected given that higher powers of nf in the
perturbative contribution to the structure functions may
arise from diagrams such as those shown in Fig. 8, with
fermion bubbles in the vertical rungs of the gluon ladder
and in the quark loop at the top of the diagram. The former
are included in the NLL BFKL anomalous dimension8, but
the latter are missing in the exact kinematics calculation
due the LL nature of the impact factor. However, one can
see that the higher order nf terms do not constitute a very
significant contribution relative to those at O(nf ). Similar
expansions for the longitudinal coefficient are

C̃
(2)DIS(e)
Lg = − 5.333nf

N
+
(−18.22nf + .03292n2

f

)
+
(
62.52nf + .1427n2

f

)
N (42)

− (86.88nf + .2551n2
f

)
N2 + O (N3) ;

C̃
(3)DIS(e)
Lg =

409.5nf

N2 +
−1246nf + 1.727n2

f

N

+
(
2127nf + 40.14n2

f + .01561n3
f

)
− (3436nf + 68.95n2

f + .01892n3
f

)
N

+
(
5345nf + 89.73n2

f + .03326n3
f

)
N2

+O (N3) . (43)

The complete results give

C̃
(2)DIS
Lg = − 5.333nf

N
+
(−6.229nf + .8889n2

f

)
+
(
80.69nf − 4.850n2

f

)
N (44)

+
(−133.8nf + 10.04n2

f

)
N2 + O (N3) ;

C̃
(3)DIS
Lg =

409.5nf

N2 +
−2076nf + 102.4n2

f

N

8 Fermion bubbles in the bottom vertical rung of the ladder
are not in the NLL anomalous dimension, but contribute to
the scale of the coupling [23].

Fig. 9. Diagram contributing
a term ∝ flg11 to the struc-
ture function
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results from the LL impact photon–gluon impact factor with ex-
act gluon kinematics (dashed). The LL approximation (dotted)
is also shown

+
(
4730nf − 340.8n2

f − .1139flg11n
2
f

+ .5926n3
f

)
+
(−9211nf + 854.1n2

f − .4340flg11n
2
f

− 5.973n3
f

)
N +

(
20054nf − 2251n2

f (45)

+ .08264flg11n
2
f + 25.74n3

f

)
N2 + O (N3) ,

where flg11 = 〈e〉2/〈e2〉, taking averages over the active
quark charges. The estimation of NLL terms is not as good
as for γqg, even for the O(nf ) contribution. Again taking
nf = 4, the NLL term in the NNLO coefficient is esti-
mated to within 35%. Nevertheless, the exact kinematics
results are in good qualitative agreement with the com-
plete results. The term in flg11 will not be estimated by the
exact kinematics calculation due to missing diagrams of
the type shown in Fig. 9. Also, this term is not associated
with a small x divergence at O(α3

S). Higher order terms
in nf and flg11 are not very significant contributions. The
x-space functions are shown in Fig. 10. Again the exact
kinematics results have the same qualitative behaviour as
the complete results at both small and large x, whereas
the LL approximations are comparatively poor.

The greater accuracy in γqg can in part be attributed
to the derivative of F2 in log(Q2). In Mellin space, this
amounts to multiplication of the sum of the transverse and
longitudinal impact factors by γ(N), which suppresses the
differences noted above by αS.

The x-space functions will ultimately be convolved with
parton distribution functions. Hence it is necessary to check
the behaviour of the x-space exact kinematics expressions
when convolved with a suitable gluon distribution. Follow-
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sults

ing [12], we convolve with the model gluon distributions:

xg(x) = x−0.3(1 − x)4; (46)

xg(x) = x0.5(1 − x)4, (47)

where the former corresponds to a high Q2 scale (�
30 GeV2), and the latter reflects the fact that the gluon
can be valence-like (or even negative at low x) at low
Q2 � 1 GeV2 [39,40]. One expects resummation of small x
terms to be more important at low Q2, due to the higher
value of αS. The results for P (1)

qg and P
(2)
qg are shown in

Figs. 11 and 12. Results for C(2)DIS
Lg ⊗ g and C

(3)DIS
Lg ⊗ g

are shown in Fig. 13 and 14. For both the splitting and
coefficient functions, the exact kinematics results qualita-
tively approximate the structure of the complete results.
Comparing them with the LL terms at small x, after convo-
lution with the gluon, one sees that they are much closer to
the complete results. The exception is C(2)

Lg , where the LL
terms convolved with the gluon distribution are closer to
the complete result at low x, aided by the fact that at this
order the coefficient function has no next-to-leading small
x divergence. At NNLO, where NLL terms are present, the
exact kinematics results perform better at small x. The ex-
act kinematics and complete results generally agree more
at the lower momentum scale. This is due to the less sin-
gular gluon distribution at low Q2, and the small x part of
the coefficient playing a more dominant role. However, at

-100

-50

0

50

10
-5

10
-4

10
-3

10
-2

10
-1

1

C
L

g(2
)D

IS
⊗

 g
 / 

g

x

xg=x-0.3(1-x)4

-6000

-4000

-2000

0

10
-5

10
-4

10
-3

10
-2

10
-1

1
x

xg=x0.5(1-x)4

Fig. 13. C
(2)DIS
Lg ⊗ g with nf = 4, showing NLO (solid), exact

kinematics (dashed) and LL (dotted) results

0

5000

10000

15000

10
-5

10
-4

10
-3

10
-2

10
-1

1

C
L

g(3
)D

IS
⊗

 g
 / 

g

x

xg=x-0.3(1-x)4

0

1000

2000

3000

x 10 3

10
-5

10
-4

10
-3

10
-2

10
-1

1
x

xg=x0.5(1-x)4

Fig. 14. C
(3)DIS
Lg ⊗g with nf = 4, showing NNLO (solid), exact

kinematics (dashed) and LL (dotted) results

higher Q2, the effect of a more singular gluon distribution
will be compensated in part by a lower value of αS, and
resummation becomes less important.

The NNLO exact kinematics splitting function gives
a negative result when convolved with the more singular
gluon, turning positive only at very low x � 10−7. This
can be attributed to the large negative dip in the exact
kinematics function (see Fig. 7) at intermediate x. Given
that the gluon is more singular than the splitting function,
the low x limit of the convolution is dominated by both
high and low x information in the splitting function. To
see how this works, consider the model splitting function

P =
A

x
+Bδ(1 − x), (48)

where the first and second terms give the dominant be-
haviour at small and high x respectively. Consider con-
volving this with the following “gluon”:

xf = xαθ(x0 − x), (49)

which is singular or valence-like at low x depending on
whether α < 0 or α > 0, and vanishes at high x. One
then has

∂ (xf)
∂ log (Q2)

= xP ⊗ f =
[
B − A

α

]
xα +

Axα
0

α
. (50)

If α > 0, the small x term in the splitting function dom-
inates the convolution. If on the other hand α < 0, the
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bracketed term in (50) gives the leading small x behaviour,
which is a mixture of both the small and large x terms of
the splitting function. This also accounts for the lack of a
common small x limit in the left-hand plots of Figs. 11, 12,
13 and 14, as each of the three splitting functions has a
different high x behaviour. Note that the complete NNLO
Pqg also has a negative dip at intermediate x. This leads
to some negative behaviour after the convolution, but not
for x � 0.05 in Fig. 12.

5 Conclusions

We have shown that the imposition of exact gluon kine-
matics in the LL virtual photon–gluon impact factor gives
a good approximation to the NLL parts of the O (α2

S

)
and

O(α3
S) splitting and coefficient functions PDIS

qg and CDIS
Lg .

The qualitative behaviour is also good over the whole x
range. We see this both by examining poles inN -space and
also convolving the x-space functions with suitable model
gluon distributions. Hence in the absence of the full NLL
impact factor9, we have confidence that the exact kinemat-
ics results can be used for an accurate NLL analysis of the
proton structure functions.

It may also be possible to impose exact kinematics in
the impact factors for heavy quark production [22]. In this
case, however, one needs to define a suitable factorisation
scheme in order to interpret the impact factors in terms of
splitting and coefficient functions.

The NNLO DIS scheme splitting and longitudinal co-
efficient functions (excluding the coefficients for charged
current scattering) have been parameterised and presented
here. There are significant qualitative differences with the
MS scheme results, particularly in the appearance of di-
vergent high x terms from soft gluon resummations in the
splitting functions. These functions are available on request
and can easily be applied for parton analyses in the DIS
scheme at NNLO.
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Appendix A: The exact kinematics splitting
and coefficient functions

The N -space splitting and coefficient functions derived
from the exact kinematic impact factors involve the func-
tion ψ(N) = Γ (N)/Γ ′(N) and its derivatives, where Γ (N)
is the Euler gamma function. The ψ functions can be
expressed as analytically continued harmonic sums [15],
which one can then inverse Mellin transform to x-space.
For brevity we define

L0 = log(x), L1 = log(1 − x). (A.1)

9 Calculation is, however, in progress [41–43].

Then the results are

C
(2)DIS(e)
Lg (x)

=
((−240x2 + 272x

)
L0 − 1196/3x2 − 92 − 16/3x−1

+ 496x)nf

+
(
32/27x(1 − x)L0 − 56/27x2 − 8/27

+ 64/27x−1)n2
f ; (A.2)

C
(3)DIS(e)
Lg (x)

=
([

3468x− 2700x2]L2
0

+
[−96x−1L2

1 +
(
2312x− 512x−1 − 1800x2)L1

−2820 − 11320x2 + 13432x

+
(
192Li2(x) + 32π2 − 2176/3

)
x−1]L0

+
[
900x2 + 256x−1 − 1156x

]
L2

1

+ [−1412 + 1800x

+
(
32π2 − 384 − 192Li2(x)

)
x−1 − 4x−2]L1

−1032 − 40892/9x2 + 6952x

+ [64Li2(x) − 192Li3(1 − x) − 384Li3(x)

− 12388/9 + 384ζ(3) − 32/3π2]x−1)nf

+
([

272/9x− 80/3x2]L2
0

+
[(−160/9x2 − 64/27x−1 + 544/27x

)
L1

− 992/27x2 + 64/9x− 16
]
L0

+
[−272/27x+ 32/27x−1 + 80/9x2]L2

1

+
[
160/9x− 64/9x−1 − 304/27 + 16/27x−2]L1

+1168/27 + 5024/81x2 − 2800/27x

+
[−128/81 + 32/81π2 − 64/27Li2(x)

]
x−1)n2

f

+16/243
(
x(1 − x)

[
3L2

0 + 2L1L0 + 14L0 − L2
1
]

−L0 − [x−2 + 1 − 2x
]
L1

− 2 − 7x2 + 10x− x−1)n3
f ; (A.3)

P (1)DIS(e)
qg (x)

=
([

92 + 120x2 − 136x
]
L0

+ 1048/3x2 + 44 + 104/3x−1 − 384x
)
nf

+
([

16/27x(x− 1)2 + 8/27
]
L0 + 8/27

+ 16/9x(x− 1))n2
f ; (A.4)

P (2)DIS(e)
qg (x)

=
([

1350x2 − 1734x+ 1587
]
L2

0
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+
[−96x−1L2

1

+(−1156x+ 900x2 + 1058 − 560x−1)L1

−890 + 10160x2 − 11340x

+
(
192Li2(x) + 32π2 − 2272/3

)
x−1]L0

+[578x− 529 − 450x2 + 280x−1]L2
1

+
[
706 − 900x+

(
32π2 − 288 − 192Li2(x)

)
x−1

− 2x−2]L1

+5992 + 86146/9x2 − 12248x

+
[
136/3π2 + 384ζ(3) − 272Li2(x) − 29842/9

−384Li3(x)

− 192Li3(1 − x)]x−1)nf

+
([

40/3x2 + 92/9 − 136/9x
]
L2

0

+
[(

184/27 − 64/27x−1 − 272/27x+ 80/9x2)L1

+ 1696/27x2 − 1448/27 − 1184/27x
]
L0

+
[−92/27 + 32/27x−1 + 136/27x− 40/9x2]L2

1

+
[
8/27x−2 + 152/27 − 32/9x−1 − 80/9x

]
L1

+800/27 − 472/81x2 + 88/3x

+
[
32/81π2 − 4304/81 − 64/27Li2(x)

]
x−1)n2

f

+4/729
(
2x(x− 1)

[
3L2

0 + 2L0L1 − L2
1
]

+3L2
0 + 2L1 + 2

[
3 − 22x+ 24x2]L0 − L2

1 (A.5)

+ 2
[
1 − 2x− x−2]L1 + 50x2 − 56x+ 8 − 2x−1)n3

f ,

where Lin(x) is the nth polylogarithm function.

Appendix B: The DIS scheme splitting
and coefficient functions

Here we present parameterisations of the coefficient and
splitting functions at NNLO in the DIS scheme [6]. For
completeness, all singlet and non-singlet splitting functions
are given. The longitudinal coefficient functions are given
only for neutral current structure functions, as the MS
scheme coefficient functions for charged current scattering
have yet to be published. First we define

Dn =
[

logn(1 − x)
1 − x

]
+
,

L0 = log(x), L1 = log(1 − x). (B.1)

Then the results are

P+(2)DIS
ns

� 785.06D0 − 2974.4D1 + 645.33D2

+14669.3758δ(1 − x) + 1868.3 + 6601.3x

+243.6x2 − 522.1x3 + 77.391L3
1

+ [−2771.56x+ 3059.61]L2
1

+[2695.85x+ 13750]L1 + [1.5802 − 15.818x]L4
0

+83.639L3
0 + [83.48L1 + 915.18]L2

0

+ [−272.00x+ 2497.50

− 750.9L1 + 8314.3L2
1 + 544.00/(1 − x)

]
L0

+nf (−325.18D0 + 403.89D1 − 78.222D2

−2150.5868δ(1 − x) + 12.951 + 217.65x

+358.28x2 + 44.79x3 + .95867xL4
0

+[2.573x− 5.6436]L3
0 + [−118.68 + 10.503L1]L2

0

+
[−67.556/(1 − x) − 155.46L1 − 503.89L2

1

+ 33.778x− 327.76]L0 − 4.6904L3
1

+[−152.43 + 167.97x]L2
1

+ [−180.68x− 1417.78]L1)

+n2
f (7.6750D0 − 11.457D1 + 2.3704D2

+63.6358δ(1 − x) − 4.8837 − 28.501x

−17.293x2 − .24667xL3
0

+[1.1852x/(1 − x) − .59259x+ 3.5556]L2
0

+[11.457 + 3.9506x/(1 − x) (B.2)

− 4.3457x+ 10.817L1]L0 − 2.0000L2
1 + 33.160L1

)
;

P−(2)DIS
ns

� 785.06D0 − 2974.4D1 + 645.33D2

+14659δ(1 − x) − 42.670 + 10704x+ 297.0x2

−433.2x3 + 1.4321L4
0 + 106.84L3

0

+[994.40 − 860.64L1]L2
0

+
[−272.00x− 630.82L1 + 2107.4 + 9310.9L2

1

+ 544.00/(1 − x)]L0 + 65.291L3
1

+[3085.1 − 2771.5x]L2
1 + [14503.+ 2695.9x]L1

+nf (−325.18D0 + 403.89D1 − 78.222D2

−2150.0δ(1 − x) + 75.786 + 413.96x+ 77.89x2

+34.76x3 − [1.136x+ 7.4805]L3
0

+[.59212L1 − 125.14]L2
0

+[−381.08L1 − 67.556/(1 − x)

+33.778x− 564.29L2
1 − 321.26]L0 − 3.9570L3

1
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+ [167.97x− 149.42]L2
1 − [1421.1 + 180.68x]L1

)
+n2

f (7.6750D0 − 11.457D1 + 2.3704D2

+63.585δ(1 − x) − 2.0572 − 55.288x

+ [3.5846 − .59259x+ 4.0479L1

+ 1.1852x/(1 − x)]L2
0

+[23.959L1 + 12.039 + 3.9506x/(1 − x)

− 4.3457x]L0 − 2.2760L2
1 + 30.600L1

)
; (B.3)

P (2)DIS
ps

� nf

(−193299 − 672088x+ 104121x2 + 964027x3

−201675x4 − 1327.61x−1 − 820.836L3
0

+[−61102.6L1 − 9741.91]L2
0

+
[
307888L1 − 190993L2

1 − 75017.3

− 196.207x−1]L0

+2332.86L1 − 1876643L2
1 + 10385.8L3

1 − 1121.25xL1

+ 1876481xL2
1 − 10509.5xL3

1 + 24.88888L4
1
)

+n2
f

(
530.035 + 7303.79x− 937.737x2 − 7925.90x3

+1105.83x4 + 9.36593x−1 − 1.65094L4
0

+1.51450L3
0 + [251.096L1 − 31.8095]L2

0

+
[−1502.08L1 + 123.563 + 13313.6L2

1
]
L0

+2649.16L1 + 13574.4L2
1 − 2639.02xL1

− 13583.3xL2
1 + 1.18519L3

1
)
; (B.4)

P (2)DIS
gg

� 2643.5D0 + 4425.8739δ(1 − x) − 20852 + 3968x

−3363x2 + 4848x3 + 14214x−1 − 144L4
0

+72L3
0 + [8757L1 − 7471]L2

0

+
[
274.4 + 2675.8x−1 + 7305L1

]
L0 + 3589L1

+nf (−412.172D0 − 534.1666δ(1 − x) + 94680.9

+423522x− 62541.01x2 − 569436x3

+120946x4 + 1149.99x−1 + 18.9631L4
0 + 660.814L3

0

+[24297.9L1 + 5133.55]L2
0

+
[
1099250L2

1 − 175012L1 + 220.737x−1

+ 40461.3]L0 − 24.8889L4
1

+[2062.11x− 1913.21]L3
1

+[−1093524x+ 1093454]L2
1

+ [−22404.4x+ 22442.5]L1)

+n2
f (−1.77778D0 + 6.44153δ(1 − x) − 19903.1

−81663.3x+ 11472.2x2 + 114322x3 − 24596.2x4

−17.8171x−1 − 81.0657L3
0

+[−5570.25L1 − 1006.77]L2
0

+
[−7493.22 − 215788L2

1

+ (85.25x+ 37019.4)L1]L0

+[784.390 − 787.057x]L3
1 + [212770x− 212747]L2

1

+ [162.579 − 283.399x]L1)

+n3
f

(
14.399 + 15.108x− 104.84x2 + 41.797x3

+33.545x4 + .44376L3
0 + [−22.307L1 + 2.6393]L2

0

+
[−139.31L2

1 − 112.57L1 + 9.5276
]
L0

−.26473(x− 1)L3
1 + 140.68(x− 1)L2

1

+ 112.93(x− 1)L1) ; (B.5)

P (2)DIS
qg

� nf (5.2833δ(1 − x) − 396354 − 1679228x

+400583x2 + 2086958x3 − 413461x4

−3164.7x−1 + 19.852L4
0 + [−1610.1 − 252.5x]L3

0

+[−130777L1 − 18993]L2
0

+
[−152378 + 612746L1 − 441.47x−1

− 3977765L2
1
]
L0

+36.004L4
1 + [2923.9 − 3143.9x]L3

1

+[4014417x− 4013999]L2
1

+ [325972x− 323111]L1)

+n2
f (−0.2404δ(1 − x) − 2697.2 − 16699x

+11510x2 + 8064.9x3 + 30.195x−1 − 10.237L4
0

+[−32.113 + 11.70x]L3
0

+[−1088.9L1 − 427.67 − 98.07x]L2
0

+
[
2782.9L1 − 1477.3 − 28176L2

1
]
L0

+2.6670L3
1 + [29629x− 29652]L2

1

+ [7440.6x− 7360.6]L1)

+n3
f (0.0013δ(1 − x) + 143.623 − 835.290x

+540.973x2 + 150.487x3 + .326927L4
0 + 3.75075L3

0

+[21.1805L1 + 25.3458]L2
0

+
[
95.2390 + 196.232L1 − 865.734L2

1
]
L0

+ 881.848(x− 1)L2
1 + 32.8575(x− 1)L1

)
; (B.6)
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P (2)DIS
gq

� −10172.599D0 + 2619.956D1 + 3026.479D2

−75.85220D3 − 118.5187D4

−17666.5673δ(1 − x) − 63856.3 − 226976x

+5645.05x2 + 370971x3 − 80184.6x4 + 6133.90x−1

−52.9383L4
0 − 269.675L3

0

+ [−972.9x− 16883.4L1 − 6887.42]L2
0

+
[−25459.0 + 1189.3x−1 − 692833L2

1

+ 122913L1]L0

+89.4494L4
1 + [7443.02 − 7918.33x]L3

1

+[−666832 + 658887x]L2
1

+[16626.4 − 32060.8x]L1

+nf (935.1848D0 − 550.4791D1 − 56.29637D2

+25.28401D3 + 2589.9531δ(1 − x) + 35445

+73884x− 11203x2 − 127979x3 + 27317x4

+350.55x−1 + 4.7407L4
0 + 312.26L3

0

+[9521.1L1 + 108.6x+ 2357.5]L2
0

+
[
99.282x−1 − 45381L1 + 16599 + 260063L2

1
]
L0

−14.222L4
1 + [−1762.4 + 1847.8x]L3

1

+[−254267x+ 254637]L2
1

+ [−4256.9 + 4324.8x]L1)

+n2
f (−12.698D0 + 17.185D1 − 3.5556D2

−93.6748δ(1 − x) − 103.10 + 809.52x− 655.80x2

−5.0491x−1 − 8.0350L3
0 + [31.758L1 − 20.430]L2

0

+
[−273.77L1 + 317.30L2

1 − 144.58
]
L0

−3.5556L3
1 +

[−230.63x+ 241.15 + 3.5556x−1]L2
1

+
[
96.502x+ 11.852x−1 − 110.71

]
L1
)
; (B.7)

C
(3)+DIS
Lns (x)

� −3634.5 + 5025.2x− 614.77x3 − 996.21x4

+(1 − x)
[
8452.3L1 + 4090.2L2

1 + 175.59L3
1

+ 225.30L4
1
]− 3280.3L0L1 − 1082.7L2

0L1 − 911.45L0

−81.823L2
0 − .72047L3

0 − 1780.0L0L
2
1

−4059.2L1 + 125.02L2
1 + 21.113L3

1 + 1.6059L4
1

+nf (617.05 − 1670.5x

+(1 − x)
[
23.584L1 − 106.82L2

1
]
+ 1717.8L0L1

+465.96L2
0L1 + 171.90L0 + 6.9942L2

0 + 370.25L1

− 45.190L2
1
)

+n2
f (−17.038 + 35.968x

+(1 − x)
[−22.215L1 + 23.829L2

1
]− 66.179L0L1

−12.884L2
0L1 − 5.1888L0 − .025315L2

0

+ 24.794L0L
2
1 − 15.012L1 + 2.3704L2

1
)

+flns
11nf

([
107.0 + 321.05x− 54.62x2] (1 − x)

−26.717 + 9.773L0 + [363.8 + 68.32L0]xL0

− 320/81L2
0[2 + L0]

)
x; (B.8)

C
(3)DIS
Lps (x)

� nf

(
1769.7 − 441.62x− [182.00L0 + 899.64]x−1

−(1 − x)
[
23.584L1 − 106.82L2

1
]

+53648L0L1 + 11604L2
0L1 − 894.81L0 + 105.36L2

0

+(1 − x)
[
81652L1 + 3880.7L2

1
]

− 76.310L3
0 − 8700.9L0L

2
1
)

+n2
f

(
4087.2 − 4143.1x+ 47.29x−1

+(1 − x)
[
2293.9L1 + 654.38L2

1
]
+ 978.21L0L1

+2199.0L2
0L1 + 1484.3L0 + 176.52L2

0 + 18.327L3
0

+ 511.80L0L
2
1 − (1 − x)

[−22.215L1 + 23.829L2
1
])

+flps
11nf

([
107.0 + 321.05x− 54.62x2] (1 − x)

−26.717 + 9.773L0 + [363.8 + 68.32L0]xL0

− 320/81L2
0[2 + L0]

)
x; (B.9)

C
(3)DIS
Lg (x)

� nf

(−4573.1 + 77228x− 70637x3

−[409.506L0 + 2076.4]x−1

+(1 − x)
[−8666.9L1 + 267612L2

1 − 4500.1L3
1
]

−8146.1L0L1 + 4257.5L2
0L1 − 4277.2L0 − 241.08L2

0

− 246.51L3
0 + 272818L0L

2
1 + .32800L1

)
+n2

f

(
8878.1 − 14399x+ 5430.1x3 + 102.40x−1

+(1 − x)
[
5143.2L1 − 83.489L2

1
]
+ 7051.6L0L1

+5593.0L2
0L1 + 3258.9L0 + 481.19L2

0 + 68.034L3
0

+ 516.40L0L
2
1
)

+n3
f

(−287.66 − 494.46x+ 782.72x3

+(1 − x)
[−614.31L1 − 1547.3L2

1
]− 32.680L0L1

−112.24L2
0L1 − 132.42L0 − 26.899L2

0 − 2.6004L3
0
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− 1490.4L0L
2
1
)

+flg11n
2
f

([−0.0105L3
1 + 1.550L2

1 + 19.72xL1

− 66.745x+ 0.615x2] (1 − x)

+20/27xL4
0 + [280/81 + 2.260x]xL3

0 (B.10)

− [15.40 − 2.201x]xL2
0 − [71.66 − 0.121x]xL0

)
.
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